In commutative algebra, one major focus of study is divisibility among polynomials. If R is an integral domain and f and g are polynomials in R[X], it is said that f divides g if there exists a polynomial q in R[X] such that f q = g. One can then show that "every zero gives rise to a linear factor", or more formally: if f is a polynomial in R[X] and r is an element of R such that f(r) = 0, then the polynomial (X − r) divides f. The converse is also true. The quotient can be computed using the Horner scheme.
If F is a field and f and g are polynomials in F[X] with g ≠ 0, then there exist unique polynomials q and r in F[X] with
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment