Tuesday, September 9, 2008


and such that the degree of r is smaller than the degree of g. The polynomials q and r are uniquely determined by f and g. This is called "division with remainder" or "polynomial long division" and shows that the ring F[X] is a Euclidean domain.
Analogously, polynomial "primes" (more correctly, irreducible polynomials) can be defined which cannot be factorized into the product of two polynomials of lesser degree. It is not easy to determine if a given polynomial is irreducible. One can start by simply checking if the polynomial has linear factors. Then, one can check divisibility by some other irreducible polynomials. Eisenstein's criterion can also be used in some cases to determine irreducibility.

No comments: